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Abstract-This paper deals with the treatment of uniform and non-uniform body forces in the
implicit-differentiation formulation for altisymmetric boundary element design sensitivity analysis.
The particular integral concept is elttended to obtain the sensitivities due to gravitational and
centrifugal body forces of uniform type. For thermal body forces of non-uniform type. the sen
sitivities are obtained through the implicit-differentiation of a surface integral. The efficiency and
the accuracy of the formulation are detcrmined for a wide range of problems which include different
altisymmetric gcometries undcr ccntrifugal. gravitational and thermal body forces.

INTRODUCTION

The inclusion ofhody forces of the gravitational. centrifugal and thermal types has received
a good deal of attention in boundary clement research. The consideration of such forces is
essential in the design of the high performance components such as, for example, fan and
turbine disks in a gas turbine engine. Due to their critical performance requirements,
optimal shapes arc often desired for their configuration. The tools currently available for
such optimal analysis do provide the information needed but at the expense of substantially
increased computational resources. As more complex designs for even more stringent
performance requirements evolve, it is essential to develop efficient tools for determining
optimal configurations for these designs with due regard to the significant types of body
forces.

The boundary element method (BEM) offers the possibility of being an efficient
method for such iterative analysis as shape optimization. This is because of the reduced
dimensionality of the problem since BEM requires only the surface of the body to be
discretized as opposed to other available methods that require full domain discretization.
While the earlier formulation of BEM by Cruse (1975) did require volume discretization
for the treatment of body forces, Cruse e/ al. (1977) and Rizzo and Shippy (1977) used the
field equations of the body force potential and the divergence theorem to reduce the volume
integrals corresponding to the conservative body forces into an equivalent surface integral.
Recently. Henry L'/ al. (1987) and Pape and Banerjee (1987) developed a method based on
particular integrals which requires neither volume nor surface integration for the treatment
of uniform body forces.

A survey of the efforts in the area of sensitivity analysis was given by Mota Soares and
Choi (1986). Some of the work concerning shape sensitivity analysis subsequent to this
survey has included a finite difference formulation by Wu (1986), and implicit-differentiation
formulations by Kane and Saigal (1988), Barone and Yang (1988), and Saigal et al.
(1989a,b). Mukherjee and Chandra (1989) presented a boundary element design sensitivity
formulation for materially nonlinear problems. None of these papers, however, have
included the treatment of body forces in sensitivity analysis. The present paper deals
with the development of a formulation for the computation of design sensitivities for
axisymmetric continua under gravitational, centrifugal and thermal type body forces. The
implicit-differentiation of the discretized boundary integral equations is performed leading
to a set ofsystem sensitivity equations. The sensitivity expressions for the particular integrals
for gravitational and centrifugal body forces are presented. The thermoelastic sensitivity
kernels are given for thermal type body forces. A set of test examples involving various
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axisymmetric designs are solved. These solutions are compared with exact analytical sen
sitivity solutions which are obtained by taking the material derivative of the corresponding
analytical response expressions. The validity of the present formulations is established
through a close agreement with exact analytical results. No previous results have been
reported in the literature concerning design sensitivity analysis with body forces using the
boundary element method.

DESIGN SENSITIVITY FORMULATION

Some basic equations ofelasticity and boundary element analysis are first summarized.
The equilibrium relationship for a homogeneous isotropic body subjected to a system of
body forces is given by

(I)

where (1,} is the stress tensor and t/J, are the body forces. The stress and strain tensors
including the effect of temperature variations are given by

(2)

(3)

where ct is the coefficient of thermal expansion; 4> is the temperature change from some
reference state; v is Poisson's ratio; E is the modulus of elasticity; and e,} is the strain
tensor. Equation (I) via equations (2) and (3) can be written as

(4)

The term t/J; = - a.E4>.J/( 1-2v) can be considered as an equivalent body force due to
temperature variation. Somigliana's identity for the displacements inside a body at point p
due to tractions and displacements on the surface at the boundary point q is expressed in
integral form as

where

(6)

(7)

Using the divergence theorem, equation (5) can be expressed in the form given by Bakr
(1986) as
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Ui(P) = - LTIj(P, q)uj(q) dr+LUIj(p, q)lj(q) dr

+1UIj(P,q)"'M)dD.- (I ~~V)1Uij.j(P,q)q,dD.. (8)

Uij and Tij are the fundamental solutions for displacements and tractions, respectively; Uj
and I} are the boundary displacements and tractions, respectively; and r is the surface
bounding the volume n of the body. The body forces "'i and the thermal effects due to
temperature variation q, are taken into account through the volume integrals in equation
(8). For certain types of body forces, the volume integrals shown in equation (8) need not
be evaluated. The centrifugal and gravitational type body forces fall into this category. The
design sensitivity formulation for such body forces is presented first. The volume integral
for thermal effects can be reduced to a surface integral. The sensitivity formulation for such
cases and the associated thermoelastic sensitivity kernels are presented next.

Gradtational and centrifugal type body force design sensilit1ity
The solution to equation (4) can be written as

u; = u~+uf (9)

where ll~ is the complementary solution satisfying L(uD =0, with L =Jl iJ2/ox; ox; + (..1.+ p) x
il 2/ox; ox}, uf is the particular integral solution satisfying L(uf) +"'i = 0, "'I are the body
forces of gravitational or centrifugal type, and the term in equation (4) due to temperature
change is neglected. The particular solutions, uf, for both the centrifugal and gravitational
cases have been given by Henry et al. (1987) for axisymmetric bodies. When the com
plementary solution fields arc substituted in equation (8). the domain integral terms drop
out. The point q is taken, in the limit, to the boundary and the discretization of the boundary
using boundary elements leads to the system of equations given as

[F]{u} = [G]{ t} +[F]{uP } - [G]{ t P}. (10)

Differentiation ofequation (10) with respect to the design variable XL leads to the sensitivity
equations as

where

[F]{ u} L = [Gl.dt} + [G]{ t}.L - [Fl.d u} + {JP} (11)

(12)

In equation (II). the vectors {u} and {t} are known through the solution of equation (10).
The vector {JP} due to the particular solution field is obtained from equation (12). The
vectors {uP} .t. and {/P}.L are obtained through the differentiation of the particular integral
solution and arc given as:

for gravitational loading :

pg
ut =If (==.L +vrr.L),

t~.L =0, and

(13)
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for centrifugal loading :

S. SAIGAL

U~I = cl[3(2+v!2)r~'.L +(I-2v)(2==.Lr+=~'.L)]

U~.L = - C I (2nr.L= + r~=.d

t~1 = C~[2(c5rr.L + c6==.dnr+ (c5r~ + c6=~)nr.L + c9(r.L=n: + r=.Ln: + r=n:.L)]

t~.L = c~[c9(r.L=n:+r:.Ln:+r:nr.d-2(cgrr.L +c9zz.dn:-(cgr2+c9z2)n:.d (14)

where

CI = _pw2(1 +v)(I-2v)/(8E(I-v»

C4 = -pw 2/8

C 5 = (3 - 1.51' - v2
)/( I - v)

C6 = (1-2v)/(I-v)

C8 = (1-5v-2v 2)/(I-v)

C9 = -2v(I-2v)/(I-I'). ( 15)

p and (I) arc the mass density and the angular speed. respectively; nr and n: are the
components of the normal in the rand: directions. respectively; and 9 is the acceleration
due to gravity. All quantities needed for the solution of equation (II) to obtain the design
sensitivities are then known.

The matrices [F] and [C] are the axisymmetric fundamental solution matrices. Their
corresponding sensitivities are denoted by [F).I. and [Cl. /.• respectively. The non-singular
terms of these matrices are obtained by the use of appropriate Gauss quadrature rules
whereas the singular terms are obtained by the use of boundary conditions corresponding
to a rigid body motion a,nd to an inflation mode. These details were discussed earlier in a
paper by Saigal ('( al. (1989b).

71/(,rttlOmedzanical design sensitivity analysis
The volume integral in equation (8) which corresponds to the temperature variation

4> can be reduced to a boundary integral through the use of Green's second identity as given
by Bakr (1986). The resulting integral expression can be written as

U,(p) = -1 T'J(p.q)IIJ(q) dr+1UIj(P. q)tj(q) dr

+cx(l+v) r{t(n_R OR)_R. iJ1>}dr (16)
8n( 1- v) Jr R ' ./ an ./ an

or in matrix form as

r. : are the boundary point coordinates; and R. Z are the integration point coordinates.
In symbolic form. equation (17). after rearrangement is given by

[F]{ u} = [C]{ t} + [V]{TJ-. (18)

The elasticity kernel matrices [F] and [C]. and the thermoelastic kernel matrix [Vl. may
be found in the textbook by Bakr (1986). {u} and {t} are the nodal displacement and
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traction vectors, respectively. {T} is the vector of nodal temperatures and temperature
gradients. The implicit-differentiation ofequation (18) leads to an expression for determining
the design sensitivities of displacements and tractions. This expression is the same as given
in equation (11). However, the vector {fP} is now given as

where

{J"} = [V].L{T} + [V]{T}.L

[
V.. Vr- ][V1

L
= .L -.L •

V:r.L V::.L

(19)

The expressions for V", V,., V., and V:: were given by Bakr (1986) and involve the elliptic
integrals of the first and the second kind, respectively. The derivatives of these elliptic
integrals with respect to the design variable XL are given by

£i.L = £i.mm.L; i = 1,2

4rR
m=-,

Q'

4(r.LR+rR.d
m.L = Q2

8rR[(r+ R)(r.L+ R.d +ii.d
Q4

Q2 = (r+ R)2+i2• i = z-Z

£. £2
£, = - --- + ----

.m m m(1 _m 2)

(20)

The vector {P'} can now be calculated using these quantities in the differentiated expressions
for V.. • Vr: ,V:r and V:: . These expressions are listed in Appendix A.

.L .L ,I. .L

Solution procedure and stress recovery
Starting with the initial configuration of the axisymmetric object, the unknown dis

placements {u} and tractions {t} are obtained from equation (10) for gravitational and
centrifugal type body forces or from equation (18) for thermal type body forces. The initial
configuration is then perturbed through a change in the design variable. The sensitivities
of the geometric quantities (r.L' Z.L, nr.L' n:.L , etc.) are obtained by applying forward
difference relationships to the initial and the perturbed configurations. These quantities are
required for the evaluation of various terms in equation (II). The geometric sensitivities
can also be obtained through analytical differentiation if the geometry of the changing
region of the object can be expressed as a function of the design variable. This is usually
possible for simple geometries such as those solved in the present paper. The design
sensitivites are obtained by solving equation (11) where the vector {fP} is calculated using
equations (12) or (19) for centrifugal and gravitational body forces or thermal body
forces, respectively. This solution yields the boundary traction sensitivities only. The stress
sensitivities at other locations can be obtained from the following expressions

where

{} [ '(J.. n;
(J.. = n:
(Jr:.L n,n:

(21 )
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Table l. Design sensitivity analysis ofa cylindrical bar under self-weight

Sensitivity

Displacement x 10' Axial stress x 10- )
Location
Z(inch) Exact This study Exact This study

0.0 7.72800 77281 o(}()(){)() 0.0026
0.5 7.70868 7.7091 -0.11592 -O.lI~8

1.0 7.650n 76513 -0.23184 -0.2317
1.5 7.55~12 755~7 -0.3~776 -0.3~76

2.0 7.41888 74\95 -0.46368 -0.4639
2.5 7.24500 72456 -0.57960 -0.5814
3.0 7.03248 7.0327 -0.69552 -0.6989
3.5 6.78132 6.7809 -0811~ -0.8185
4.0 6.49152 6490\ -0.92736 -0.938\
4.5 6.16308 6.1600 -1.1~33 -1.0606
5.0 5.79600 5.7904 -1.15920 -1.1832
5.5 5.39028 5.381~ - 1.27512 -1.309\
6.0 4.94592 4.9327 -1.391~ -1.4251
6.5 4.46292 4.~5 -1.50696 -1.5627
7.0 3.94128 3.9170 - 1.62288 -1.6904
7.5 3.38100 3.3508 - 1.73880 -1.8148
8.0 2.78208 2.7468 -1.85~72 -\.9386
8.5 2.14452 2.1069 - 1.97064 -2.0495
9.0 1.461132 14330 - 2.08656 -2.1596
9.5 0.75348 0.7299 - 2.202411 - 2.2389

10.0 ooסס0.0 OOסס.0· -2.31840 -2.32~

• Prescribed boundary condition.

I
ellll, =, (U,tr-u,r 1)'.' r"' .. (22)

The subscripts I and 2 correspond, respectively, to the normal (q) and tangential (~)

directions of a coordinate system located at the surface. The major advantage of the
analytical implicit-dilTerentiation approach lies in the fact that the left-hand side coefficient
matrix [F] which needs to be factorized to determine the sensitivities {u},t in equation (II)
is the same as the left-hand side coefficient matrix for equation (10). Thus this matrix is
factorized only once and saved for later re-use, resulting in substantial economy ofcomputer
time.

NUMERICAL RESULTS

A series ofaxisymmetric test examples were solved to demonstrate the design sensitivity
formulations for body forces discussed in the above sections. All computations reponed
here were carried out on a RIDGE 3200 computer system at Worcester Polytechnic Institute.
For the problems with gravitational or centrifugal body forces, the following data were
used: modulus of elasticity, E = 3 X 107 psi; Poisson's ratio, v = 0.3; mass density, p = 6
Ibm in - 3; angular rotation, (J) = 10 rad S-I acceleration due to gravity, g = 386.4lb-in s- 2.

(I) Cylindrical bar under self weight
A solid cylindrical bar of radius r = 4 inch and length, I = 10 inch, hanging in its
gravitational field was studied. An axisymmetric section of the bar was modeled using
18 equal boundary elements. The axis of rotation of the bar was not modeled since
appropriate fundamental solutions given by Bakr (1986) for this case were used. The
length, I, of the bar was chosen as the design variable for which the sensitivities are
required. The sensitivities for displacements and axial stress along the outer radius of
the bar are given in Table I. The location: = 0 corresponds to the free end of the bar
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and the bar was suspended at the location z = 10 inch. An analytical solution for
response for this problem was given by Love (1944). The exact sensitivities for this case
were obtained from the differentiation of the analytical solution for comparison. A
good agreement of results along the entire length of the bar can be seen.

(2) Solid sphere under rOiation
The design sensitivities for a solid sphere of radius 10 inch subjected to an angular
velocity of 10 rad S-I were obtained next. An analytical solution for the response of
the sphere under rotation was given by Love (1944). The exact sensitivity data were
obtained by the differentiation of this solution. The outer radius of the sphere was
taken as the design variable and a perturbation of 0.00 I inch was used to determine
the geometric sensitivity quantities. A quarter of the axisymmetric section was modeled
using 10 and 20 boundary elements, respectively, to model each of the straight and the
curved sides of this section. The axis of the sphere was not modeled and appropriate
fundamental solutions were used. The displacement and axial stress sensitivities along
a radial axis are given in Table 2. The exact sensitivity results for this case are also
reported in this table. A good agreement of the present results with the exact solution
can be seen for both meshes used.

(3) Rotating disk with hyperbolic varying thickness
A hollow circular disk with a hyperbolic (= = lO/r) variation of thickness between the
inner and the outer radii was analyzed. The inner radius of the disk was taken as the
design variable. This case was considered since the geometry of the object is more
general; the geometric sensitivity data due to perturbation of the inner radius are more
general; and this perturbation includes the variation of normal at the nodal points in
addition to the variation of their coordinates. The disk was subjected to an angular
rotation of 10 rad s - I.

A radial cross-section of the disk was modeled using 15 and 30 boundary elements,
respectively. The element distribution for the 15 element model is shown in Fig. I and
these elements were doubled for the 30 element model. The design variable was per
turbed by 0.025% and the entire model was remeshed after the change in geometry.
The sensitivity results for displacements and their conv,ergence with increase in number
ofelements are given in Table 3. This table also gives the circumferential stress sensitivity
results for the 30 element model. Analytical results were obtained from the elasticity
solution given in Saada (1987) and are also shown in Table 3. These results are,
however, based on the assumption of plane stress. With due regard to this assumption,
a good agreement of the present results with the exact results can be observed.

(4) Hollow plane strain cylinder under pressure and temperature variation
A hollow cylinder under conditions of plane strain was analyzed. The ends of the

Table 2. Design sensitivity analysis of a solid sphere under rotation

Sensitivity

Displal:ement x 10' Axial stress x 10 - 1

Radius
(inch) Exal:l Mesh A Mesh B Exact Mesh A Mesh B

0.00 ooסס0.0 •0.()()()() OOסס.0· 3.02521 2.9281 2.9302
1.00 1.71137 1.7114 1.7114 2.96471 2.9596 2.9651
2.00 3.38106 3.3810 3.3811 2.78319 2.7838 2.7839
3.00 4.96736 4.9673 4.9674 2.48067 2.4817 2.4813
4.00 6.42861 6.4286 6.4287 2.05714 2.0582 2.0577
5.00 7.72311 7.7231 7.7232 1.51261 1.5137 1.5131
6.00 8.80917 8.8091 8.8093 0.84706 0.8482 0.8474
7.00 9.64511 9.6451 9.6452 0.06050 0.0616 0.0607
8.00 10.1892 10.189 10.189 -0.84706 -0.8460 -0.8470
9.00 10.3999 10.400 10.400 -1.87563 -1.8772 -1.8759

10.00 10.2353 10.236 10.236 -3.02521 -3.0424 -3.0332

• Preseribed boundary condition.
Mesh A: 20 element mesh.
Mesh B: 40 element mesh.
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Fig. I. Disk with varying thickness.

cylinder were thermally insulated and constrained not to move in the axial direction.
The temperature ticld for the cylinder is then given as T(r) = T, - (T, - Til) In (rl R,)!
In (RIl! R,) where T and R are the temperature and the radius, respectively; the sub
scripts i and 0 refer to the inner and the outer radius, respectively; r is the radius. The
temperature and temperature gradients required for the evaluation of vector {fl'} in
equation (19) were calculated using this field. The numerical data used were as follows:
R, = 3,/(, = 6, Ii = 5, 7:, = 3. E = 1.0, v = 0.3, and the coefficient of thermal expansion
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Table 4. Design sensitivity analysis of a plane strain hollow cylinder under pressure and temperature variation

Sensitivity

Radial displacement Radial stress Circumferential stress
Radius
(inch) Exact This study Exact This study Exact This study

3.0 3.6305 3.6315 0.000 0.000 0.5955 0.5956
3.5 3.6694 3.6712 -0.1058 -0.1074 0.6995 0.6993
4.0 3.6168 3.6174 -0.1181 -0.1186 0.7112 0.7110
4.5 3.5302 3.5309 -0.0971 -0.0975 0.6903 0.6902
5.0 3.4341 3.4350 -0.0653 -0.0654 0.6591 0.6594
5.5 3.3396 3.3402 -0.0318 -0.0318 0.6264 0.6265
6.0 3.2513 3.2523 0.000 0.000 0.5955 0.5956

C( = 0.02. The inner surface was also subjected to a pressure P = 1.0. The sensitivity of
this design to changes in the inner radius R j was studied.

A unit depth of the cylinder was modeled. A boundary element mesh of 16 elements.
two along each of the axial sides and six along each of the radial sides. was used. The
design sensitivities for radial displacement II" radial stress q" and circumferential stress
q// are given in Table 4. The exact sensitivity results were computed by differentiating
the response results given by Boley and Weiner (1960). The exact results are also shown
in Table 4 and a good correlation of the present results with these exact results can be
seen.

(5) Pres.wri=c:d hollow sphere IIf/der temperature variation
A thick-walled hollow sphere of inner radius R, = 1.0 and outer radius Ro = 2.0 was
considered. The inner surface was maintained at temperature T; = 6.0 and under pres
sure P, = 5.0. while the outer surface was maintained at temperature To = 2.0 and
pressure Po = 3.0. The material properties used were: E = 1.0. v = 0.3. and IX = 0.02.
The temperature field for the sphere is given by

where r is the radius. This temperature field was used in the expression for {fP} in
equation (19). The inner radius R; was taken as the design variable in this case. Due to
double symmetry. only a quarter of the axisymmetric section was modeled. An exact
solution for the response of the sphere was given by Boley and Weiner (1960) from
which the sensitivity results were obtained by differentiation with respect to the inner
radius Ri• Three different mesh distributions as shown in Fig. 2 were used to obtain
both the response and the design sensitivity results. The results from the present analysis
along with the analytical exact results are shown in Table 5 for the three meshes. A
good comparison of resulls with a maximum error below I % for displacement sen
sitivities with the refined mesh can be observed. Higher percentage errors for radial
stress sensitivity were seen where the stress sensitivity had a value close to zero. It was
noted from the results in Table 5 that as the mesh is refined. the design sensitivity
analysis results show similar trends for convergence towards the exact results as the
response results. This problem provides an example of the validity of the formulation
for curved boundary elements and for treatment of the axis of rotational symmetry.

(6) Solid sphere under constant temperature rise
The sensitivity analysis of a solid sphere of radius Ro = 2 with respect to the outer
radius Ro as design variable was considered next. The sphere was maintained at a
uniform temperature of T = 10 and the numerical data used were: E = 1.0. v = 0.3
and IX = 0.05. Due to double symmetry of the axisymmetric section. only a quarter of
this section was modeled using four boundary elements along the radial direction and
two elements for the curved boundary. The analytical solution used for the previous
example of hollow sphere can be used in this case with R, = 0 to obtain the exact
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Fig. 2. Boundary element meshes for a pressurized hollow sphere under temperature variation.

Tahle 5. Design sensitivity analysis of a pressurized hollow sphere under temperature variation

Radial displacement Radial displacement sensitivity

Radius Five Six Twelve Five Six Twelve
(inch) Exact clements clements clements Exact elements elements elements

1.0 0.4628 0.4511 0.4569 0.4620 1.5126 1.4964 1.4991 1.5091
1.25 -0.3131 -0.3172 -0.3139 1.8563 1.8426 1.8535
1.50 -0.8586 -0.8559 -0.8616 -0.8593 1.9247 1.9090 1.9137 1.9222
1.75 - 1.2954 -1.2978 -1.2959 1.9896 1.9807 1.9873
2.0 -1.6743 -1.6719 - 1.6763 -1.6744 2.0996 2.0903 2.0946 2.0980

Radial stress Circumferential stress

Radius Five Six Twelve Five Six Twelve
(inch) Exact elements elements elements E.~act elements elements elements

1.0 -5.00 -5.00 -5.00 -5.00 -1.653 -1.715 -1.660 -1.650
1.25 -3.902 -4.02 -3.86 -2.156 -2.190 -2.150
1.50 -3.407 -3.31 -3.35 -3.39 -2.373 -2.32 -2.360 -2.370
1.75 -3.149 -3.17 -3.14 -2.481 -2.550 -2.480
2.0 -3.00 -3.00 -3.00 -3.00 -2.539 -2.28 -2.530 -2.540

Radial stress sensitivity Circumferential stress sensitivity

Radius Five Six Twelve Five Six Twelve
(inch) Exact elements elements elements Exact elements elements clements

1.0 0.00 0.0 0.0 0.0 1.50 1.4730 1.498 1.4992
1.25 -0.901 -0.6667 -0.9384 1.923 1.9725 1.9151
1.50 -0.653 -0.4734 -0.6210 -0.6482 1.801 1.767 1.8044 1.8008
1.75 -0.297 -0.3007 -0.2908 1.634 1.6265 1.6341
2.0 -0.0 -0.0 0.0 0.0 1.50 1.4934 1.4967 1.5001

._-----~._-, ..•..•
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Table 6. Design sensitivity analysis of a solid sphere under uniform tmperature rise

Sensitivity

Radial displacement Radial stress Circumferential stress
Radius
(inch) Exact This study Exact This study Exact This study

0.0 0.00 0.000 0.00 0.0029 0.00 -0.0027
0.25 0.0625 0.0625 0.00 0.0001 0.00 0.0001
0.50 0.125 0.1250 0.00 0.0001 0.00 -0.0001
0.75 0.1875 0.1876 0.00 0.0000 0.00 0.0000
1.00 0.250 0.2501 0.00 0.0000 0.00 0.0000
1.25 0.3125 0.3126 0.00 0.0000 0.00 0.0000
1.50 0.375 0.3752 0.00 0.0000 0.00 0.0000
1.75 0.4375 0.4378 0.00 -0.0002 0.00 0.0000
2.00 0.50 0.5007 0.00 0.0008 0.00 0.0012

sensitivity results. The sensitivity results from the present formulation are given in
Table 6 for the displacement. radial stress. and circumferential stress sensitivities.
respectively. The corresponding eltact results are also shown in this table for comparison
and a good agreement can be observed. The zero stress sensitivities along both the
radial and the circumferential directions were accurately predicted up to the fourth
digit as seen from the results in Table 6.

(7) Compound hollow sphere under thermal stresses
A compound sphere consisting of two thick-walled spheres perfectly bonded to each
othcr was considcred. as shown in Fig. 3. The sphere had an inner radius R I == 1.0. an
intcrface radius R 2 == 1.5. and an outcr radius R J == 2.0. The inner surface of the inner
sphere of conductivity k I == 1.0 was under a pressure PI == 5.0 and maintained at a
temperature T 1 == 5.0. while thc outcr surface of the outer sphere of conductivity
k 2 == 2.0 was undcr a prcssure P 2 == 3.0 and maintained at a temperature T 2 == 3.0. The
material data were: £1 == 1.0. VI == 0.3. OCI == 0.15 for the inner sphere and £2 == 2.0,
V2 == 0.2. OC2 == 0.25 for the outcr sphere.

Duc to symmetry about the z == 0 plane. only a quarter of the section of the compound
sphere is modeled using 16 elements and two zones. as shown in Fig. 3. Zone I had 10
elcments and was used to model the region of material I and Zone [[ had 10 elements
and was used to model the region of material 2. Across the zone interface. the tem
peratures were continuous while thc temperature gradients were discontinuous. A very
accuratc comparison of response results was obtained with the analytical solution given
in the tCltt by Bakr (1986).

Fig. 3. Pressurized compound hollow sphere under thermal stresses.

SAS 25: 8-1
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Table 7. Design sensitivity analysis of a pressurized compound hollow sphere under temperature variation

Sensitivity

Displacement Radial stress Circumferential stress
Radius
(inch) FDSA* IDSA FDSA- IDSA FDSA- IDSA

1.0 1.370 1.4008 0.0 0.0 0690 0.6597
1.125 1.622 1.6686 -0.820 -0.8146 1.010 1.0499
1.25 1.728 1.7551 -1.260 -0.9861 1.140 !.l295
1.375 1.739 1.8487 -1.30 -1.0836 1I50 1.3196
1.50 (inner) 1.762 1.7859 -1.23 -!.l182 1.210 1.1264
1.50 (outer) 1.762 1.7859 -1.23 - 1.1182 2.570 2.497
1.625 1.682 1.7183 -0.81 -1.064 2.330 2.3912
1.75 1.662 1.6693 -0.48 -0.725 2210 2.2655
1.875 1.650 1.6849 -0.23 -0.068 2.130 2.2503
2.0 1.631 1.6733 0.0 0.0 2.060 2.1664

FDSA = Finite Difference Sensitivity Analysis.
IDSA = Implicit Differentiation Sensitivity Analysis.
- Perturbation step size = 0.01 inch.

For the design sensitivity analysis. the inner radius R1 was considered as the design
variable. The design sensitivities for radial displacements. radial stresses and cir
cumferential stresses along the radius of the sphere arc shown in Table 7. These
sensitivities were also obtained using a finite-difference approach. In this approach two
stress analysis were performed. first with the initial value of the design variable and
next with a perturbed value of the design variable. A forward-difference relationship
was then used f{lr these two analyses to determine the required sensitivities. The
sensitivity results for a perturbation of 0.0 I of the inner radius of the present sphere
arc shown in Table 7. The two sets of results arc in good agreement. It is noted that
the !inite-dilference sensitivity results depend on the perturbation step size. This example
was provided to demonstrate the applicability of the present developments to a class
of pral:til:al problems for which the material parameters may vary spatially.

CONCLUDING REMARKS

The treatment of body forces of the centrifugal. gravitational. and thermal types in the
implicit-differentiation formulation for the design sensitivity analysis ofaxisymmetric bodies
using the boundary element method is presented. The particular integral sensitivity
expressions for the gravitational and centrifugal type body forces are developed. The
thermoelastic sensitivity kernels arc given for the thermal type body forces. A wide range
of problems dealing with a variety of axisymmetric bodies are presented. The sensitivities
due to centrifugal. gravitational. and thermal body forces arc solved and compared with
the l:orn.:sponding exact solutions. The accuracy of results obtained demonstrates the
validity of the present formulation.
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APPENDIX A

The thermoelastic sensitivity kernels for equation (19) are given as

V~.L = V"'.L E , + V~,E,.L + V~l.•El+ V"lEl.L

V".L = V"',.E, + V",E,.L + V"l,.El + V"lEl,.

V".L = V"',.E, + V.. ,E,.L + V..l,.El + V"lEl.L

V".L = V"' .•£, + V"' £',.

where

4(", l l _ _ 2mm.l.cJ+3mlclcl.
V"' .• = ;;;I~d2("". + RR,,,)II,+n,.,.(' + R )+(:R.1• +!.l.R)n,+ R:R.,r.l- ---;;;y--' V"'

4c, }.l l 4c.(2cm,1. +3mc.L)
V"l = - -(l ) l (2nrm.L c + 3, c I.m ) = - J •.• me) . .m c

(" I
V"lL =R~D {(R,.=-F=.")n.+n,,LF=-(4::.I. R + 2=lR.t.ln:-2n:.l.=lR} - RCD (R.LCD+C,I. RD + D LRC)V"l

V _ .,. (=<'.1. - =,I.c)
::I.L - -, I c l

where

B.L = 2(".1. + RR,L +ii,l.)

I
C.1. '" c[('+ R)(,,1. + R,L) +:=.t.l

D,1. = 2[(R-,)(R,L-'.Ll+ii,L1

F.1. = 2(",1. -RR.1. +ii.Ll

H.L = 2(RR,L -".1. +::.1.)

4
m.L = ?(R,I.'+'.I.R-2R,cC,L)'

All other expressions and constants are given in Bakr (1986).


